Evaluation of High-Performance Asphalt Binders Modified with SBS, SIS, and GTR
Author(s): |
Hyun Hwan Kim
Mithil Mazumder Moon-Sup Lee Soon-Jae Lee |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Advances in Civil Engineering, 2019, v. 2019 |
Page(s): | 1-11 |
DOI: | 10.1155/2019/2035954 |
Abstract: |
In this study, performance properties of polymer-modified asphalt (PMA) binders are evaluated depending on ground tire rubber (GTR) and styrene-isoprene-styrene (SIS). Styrene-butadiene-styrene- (SBS-) modified asphalt binder of PG 76-22 is used as a base binder to manufacture the rubberized PMA binder. The rubberized PMA binders are blended using SIS modifier. The binders were artificially short_term and long-term aged using rolling thin-film oven (RTFO) and pressure aging vessel (PAV) procedures. Superpave binder tests were conducted on the binders through rotational viscometer (RV), dynamic shear rheometer (DSR), and bending beam rheometer (BBR). Furthermore, multiple stress creep recovery (MSCR) test and atomic force microscopy (AFM) microstructural analysis were performed. The results of this study indicated that (1) the viscosity properties seem to be highly dependent on GTR and SIS contents, (2) the addition of SIS is observed to have a significant effect on improving the rutting performances of rubberized PMA binders, (3) the cracking properties are considered to be improved significantly through SIS modification, and (4) in general, the rubberized PMA binders with SIS showed the best performance for rutting and cracking among all the binders used in this study. |
Copyright: | © Hyun Hwan Kim et al. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
4.58 MB
- About this
data sheet - Reference-ID
10376180 - Published on:
06/10/2019 - Last updated on:
02/06/2021