0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Evaluation of Earned Value Management-Based Cost Estimation via Machine Learning

Author(s):
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 12, v. 14
Page(s): 3772
DOI: 10.3390/buildings14123772
Abstract:

Accurate estimation of construction costs is of foremost importance in construction management processes. Considering the changes and unexpected situations, cost estimations should be revised during the construction process. This study investigates the predictability of earned value management (EVM)-based approaches using machine learning (ML) methods. A total of 2318 data points via 19 EVM-based cost estimation methods were created and six ML methods were used for the analyses. The planned and actual project data of the rough construction activities of a housing project completed in Türkiye were used. The ML methods considered consisted of adaptive neuro-fuzzy inference systems (ANFISs), artificial neural networks (ANNs), Gaussian process regression (GPR), long-short_term memory (LSTM), M5 model trees (M5TREEs), and support vector machines (SVMs). The created models were compared using performance criteria such as mean absolute percentage error (MAPE), relative root means square error (RRMSE), coefficient of determination (R2), Nash–Sutcliffe efficiency coefficient (NSE), and overall index of model performance (OI). Moreover, radar charts, trend graphs, Taylor diagrams, violin plots, and error boxplots were used to evaluate the performance of the estimation models. The results revealed that the classical ANN model outperforms EVM-based cost methods that utilize current ML methods.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10810377
  • Published on:
    17/01/2025
  • Last updated on:
    25/01/2025
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine