Evaluation of capabilities of different global sensitivity analysis techniques for building energy simulation: experiment on design variables
Author(s): |
Arthur Santos Silva
Enedir Ghisi |
---|---|
Medium: | journal article |
Language(s): | Portuguese |
Published in: | Ambiente Construído, April 2021, n. 2, v. 21 |
Page(s): | 89-111 |
DOI: | 10.1590/s1678-86212021000200516 |
Abstract: |
The objective of this study is to investigate the capabilities of different global sensitivity analysis methods applied to building performance simulation, i.e. Morris, Monte Carlo, Design of Experiments, and Sobol methods. A single-zone commercial building located in Florianópolis, southern Brazil, was used as a case study. Fifteen inputs related to design variables were considered, such as thermal properties of the construction envelope, solar orientation, and fenestration characteristics. The performance measures were the annual heating and cooling loads. It was found that each method can provide different visual capabilities and measures of interpretation, but, in general, there was little difference in showing the most influent and least influent variables. For the heating loads, the thermal transmittances were the most influent variables, while for the cooling loads, the solar absorptances stood out. The Morris method showed to be the most feasible method due to its simplicity and low computational cost. However, as the building simulation model is still complex and non-linear, the variance-based method such as the Sobol is still necessary for general purposes. |
Copyright: | © 2021 Arthur Santos Silva, Enedir Ghisi |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
2.6 MB
- About this
data sheet - Reference-ID
10603015 - Published on:
17/04/2021 - Last updated on:
02/06/2021