Evaluating Waste-Based Alkali Activated Materials as Pavement Quality Concrete
Author(s): |
Joseph Abdayem
Marianne Saba Fateh Fakhari Tehrani Joseph Absi |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Infrastructures, 24 October 2024, n. 11, v. 9 |
Page(s): | 190 |
DOI: | 10.3390/infrastructures9110190 |
Abstract: |
The utilization of Ordinary Portland Cement as the primary material of choice in the construction industry has had its drawbacks due to the large amounts of pollution Portland cement’s production causes. Significant findings have been discovered, and alkali-activated materials have been implemented as an alternative cementitious material to the traditional concrete of today. Alkali-activated materials can be formulated using industrial wastes, making them eco-friendly and a more sustainable replacement for concrete. This study aims to assess whether alkali-activated materials can be implemented in infrastructural fields and seeks to evaluate the possibility of alkali-activated materials acting as pavement-quality concrete in infrastructural applications. This review presents the results of various studies, demonstrating that alkali-activated materials can meet the requirements for pavement-quality concrete with the proper incorporation of industrial wastes. This outlines the viability of alkali-activated materials (AAMs) as a green alternative for pavement applications as most AAMs attain required mechanical properties, mostly reaching compressive strength values higher than the required 40 MPa, all while simultaneously adhering to the needed durability, workability, drying shrinkage, and abrasion resistance attributes. Using industrial waste-based alkali-activated materials renders the material eco-friendly and sustainable, all while enhancing the material’s characteristics and properties necessary for large-scale infrastructural applications. This review highlights AAMs’ suitability as a durable and eco-friendly solution for pavement construction. |
Copyright: | © 2024 the Authors. Licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
0.39 MB
- About this
data sheet - Reference-ID
10806420 - Published on:
10/11/2024 - Last updated on:
10/11/2024