Evaluating Fresh and Hardened Properties of High-Strength Concrete Including Closed Steel Fibres
Author(s): |
Sarah Al-Qutaifi
Ali Bagheri |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | The Open Civil Engineering Journal, 22 February 2021, n. 1, v. 15 |
Page(s): | 104-114 |
DOI: | 10.2174/1874149502115010104 |
Abstract: |
Background:The tensile strength of the plain concrete is weak. Thus, fibres are embedded in concrete to improve its ductility. However, pulling out steel fibres from concrete structures is one of the most encountered issues in the fiber-reinforced concrete, which hinders using their maximum capacities. Objectives:Thus, closed steel fibres (square shape) were incorporated into concrete mixes to evaluate their impacts against the pulling-out effects and assess the feasibility of applying Closed Steel Fibres (CSFs) on the fresh and hardened concrete properties. Hooked end and straight steel fibres were also investigated for comparison. Methods:The utilized steel fibres were incorporated with lengths of 20, 30, and 40 mm, and volume fractions of 0.25%, 0.50%, and 0.75%. Silica Fume (SF) was involved in the fibre-reinforced concrete mixtures at 7% of the cement weight. Results:Paper outcomes stated that the inclusion of steel fibres involved different impacts on the concrete compressive strength depending on the applied fibre geometries and content. Conclusion:CSFs exhibited better performance against the pulling-out effect from the surrounding concrete structure than those of hooked end and straight steel fibres. However, the addition of CSFs has increased the concrete permeability due to their poor space-filling capacity. |
Copyright: | © 2021 Sarah Al-Qutaifi and Ali Bagheri |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
0.66 MB
- About this
data sheet - Reference-ID
10607721 - Published on:
15/05/2021 - Last updated on:
02/06/2021