Evaluating Earthquake Stability of Solar Module Soundproofing Structure by 3D Numerical Analysis
Author(s): |
Sun Yong Kwon
Jongkwan Kim Mintaek Yoo |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 22 November 2023, n. 12, v. 13 |
Page(s): | 3075 |
DOI: | 10.3390/buildings13123075 |
Abstract: |
In this study, dynamic numerical analysis was conducted on the existing sound barrier wall structure and the recently developed double-sided solar-module-integrated sound barrier wall structure using the finite-difference method for numerical modeling. A seismic safety evaluation was performed based on a series of numerical analysis results. Both structures were modeled using a 3D modeling technique with FLAC 3D to account for differences in lateral stiffness. For seismic considerations, the Pohang seismic wave was selected to represent short_period earthquakes in line with Korea’s seismic characteristics. Additionally, the Hachinohe seismic wave was chosen to simulate long-period earthquakes and consider the effects of the seismic period. To calculate the input seismic waves based on the ground response, a site response analysis was conducted for a site designated for demonstrating a double-sided solar module-integrated sound barrier wall structure in Korea. The analysis reveals that the existing structure maintains overall structural integrity and ensures the safety of solar modules even in an earthquake with a return period of 2400 years. However, for a solar module-integrated sound barrier wall structure, stresses exceeding the compressive strength of the solar module occur in earthquakes with a return period exceeding 1000 years, necessitating additional design and reinforcement for preparation. |
Copyright: | © 2023 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
3.89 MB
- About this
data sheet - Reference-ID
10753486 - Published on:
14/01/2024 - Last updated on:
07/02/2024