Estimation of Annual Routine Maintenance Cost for Highway Tunnels
Author(s): |
Xuelian Wu
Xiaoli Shi Yuhuan Li Xiaotian Gong |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Advances in Civil Engineering, January 2022, v. 2022 |
Page(s): | 1-14 |
DOI: | 10.1155/2022/5374461 |
Abstract: |
In highway management, the prediction of the routine maintenance cost of tunnels is an important issue in saving tunnel maintenance costs due to its uncertainty, and the influencing factors should be carefully selected because too many variables could not be involved in the model. The complicated relationship between variables may lead to the inconsistency of model coefficients with the actual situation even though the goodness of fit of the model constructed with more variables is higher. This paper presents an approach in which quantitative analysis is combined with qualitative analysis to quickly select the independent variables of the tunnel routine maintenance cost (TMC) model. Based on the routine maintenance data collection of nine highway tunnels in Shaanxi province from 2007 to 2016, the independent variables of the models are determined with one-way ANOVA, Pearson correlation, partial correlation, and hierarchical regression. Afterwards, a fixed-effect regression model which can reflect the overall regional features is developed. Results show that tunnel age (Age) and tunnel length proportion (PET) have less effect on TMC among the main influencing factors such as district, Age, annual average daily traffic volume (AADT), truck traffic volume proportion (PTT), PET, and number of ventilation facilities (NVF), while the NVF makes a positive contribution to the TMC. Compared with grouped regression models, the fixed-effect regression model has higher fitting accuracy and a better regression coefficient significance. The quick independent variable selection method can shorten the time of establishing the model and determine the influencing factors of the research object effectively. The established model is suitable for forecasting the TMC and budget arrangement. In addition, the elastic analysis results of regression coefficients are helpful to the decision of maintenance strategy and the allocation of maintenance funds. |
Copyright: | © Xuelian Wu et al. et al. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
0.85 MB
- About this
data sheet - Reference-ID
10698207 - Published on:
11/12/2022 - Last updated on:
15/02/2023