0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Estimating the Compressive Strength of Cement-Based Materials with Mining Waste Using Support Vector Machine, Decision Tree, and Random Forest Models

Author(s):


ORCID
Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2021
Page(s): 1-10
DOI: 10.1155/2021/6629466
Abstract:

To estimate the compressive strength of cement-based materials with mining waste, the dataset based on a series of experimental studies was constructed. The support vector machine (SVM), decision tree (DT), and random forest (RF) models were developed and compared. The beetle antennae search (BAS) algorithm was employed to tune the hyperparameters of the developed machine learning models. The predictive performances of the three models were compared by the evaluation of the values of correlation coefficient (R) and root mean square error (RMSE). The results showed that the BAS algorithm can effectively tune these artificial intelligence models. The SVM model can obtain the minimum RMSE, while the BAS algorithm is inefficient in DT and RF models. The SVM, DT, and RF models can be used to predict the compressive strength of cement-based materials using solid mining waste as aggregate effectively and accurately, with high R values and lower RMSE values. The RF algorithm can obtain the highest value of R and the lowest value of RMSE, demonstrating the highest accuracy. The solid mining waste to cement ratio is the most important variable to affect the compressive strength. Curing time was also an important parameter in the compressive strength of cemented materials, followed by the water-solid ratio of mining waste and fine sand ratio.

Copyright: © 2021 Hongxia Ma et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10625400
  • Published on:
    26/08/2021
  • Last updated on:
    17/02/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine