0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

The Establishment of Segmented Constitutive Relationship of Coal under Triaxial Compression: Take the No. 3 Coal of Xinhe Colliery as an Example

Author(s):


Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2020
Page(s): 1-10
DOI: 10.1155/2020/8861936
Abstract:

Constitutive relationship of coal under triaxial compression must be determined during solving the theoretical calculation and numerical simulation about coal body failure. This paper carried out the conventional triaxial compression test on No. 3 coal of Xinhe Colliery using the MTS815.03 servo-controlled rock mechanical test system. The results indicate that the failure process of coal can be divided into 5 stages: densification stage, apparent linear elastic deformation stage, accelerated inelastic deformation stage, fracture and developing stage, and plasticity flow stage. Within the test confining pressure (20 MPa), the peak strain of coal is approximately linearly positively correlated with the confining pressure. The relationship between elastic modulus of coal and confining pressure is quadratic polynomial. The triaxial compressive strength and residual strength of coal are approximately linearly positively correlated with confining pressure. The constitutive relationship model of coal can be simplified as the four segments of straight line model of “elastic–plastic hardening–plastic softening–residual perfectly plastic.” Through fitting calculation of test data, the segmented constitutive equation of coal can be obtained, and the every segment span of strain.

Copyright: © Yongjie Yang et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10535939
  • Published on:
    01/01/2021
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine