The Environmental Profile of Clinker, Cement, and Concrete: A Life Cycle Perspective Study Based on Ecuadorian Data
Author(s): |
Daniel M. Petroche
Angel D. Ramirez |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 8 March 2022, n. 3, v. 12 |
Page(s): | 311 |
DOI: | 10.3390/buildings12030311 |
Abstract: |
Concrete is the most-used material in the construction industry, and the second most-used after water. Cement is the main component of concrete. A total of 8% of global CO2 emissions correspond to the cement industry; CO2 is the main greenhouse gas contributing to global warming. To mitigate climate change, it is necessary to design buildings with a lower environmental impact, and therefore, it is crucial to assess the environmental profile of the local production of construction materials. This study uses the life cycle assessment methodological framework to evaluate the environmental sustainability of the cement and concrete industry in Ecuador. The inventory accounts for 62.8% of national cement production, with data corresponding to 2019. The OpenLCA software was used to perform the life cycle inventory and impact assessment calculations. Eight impact categories were assessed, including Global Warming Potential (GWP). Clinker has a GWP result of 897.04 kg CO2-Eq/ton. Hydraulic cement types MH, GU, and HE have GWPs ranging from 465.89 to 696.81 kg CO2-Eq/ton. Results of ready-mixed concrete range from 126.02 to 442.14 kg CO2-Eq/m³. Reducing the content of clinker in cement and concrete should be the aim so as to improve their environmental profiles. This study contributes to the development of regional life cycle inventory data for Latin America. This research is the first to be developed regarding construction materials in Ecuador and contributes to the sustainable design of structures with pozzolan-lime cement and concrete. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
1.88 MB
- About this
data sheet - Reference-ID
10661256 - Published on:
23/03/2022 - Last updated on:
01/06/2022