0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Ensemble Tree-Based Approach to Predict the Rotation Capacity of Wide-Flange Beams

Author(s): ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2022
Page(s): 1-11
DOI: 10.1155/2022/4195243
Abstract:

The rotation capacity of wide-flange beams is a mechanical and physical parameter that shows a structural member’s ductility. It is a crucial factor in the plastic design phase of wide-flange beams, especially useful in extreme circumstances such as earthquakes. This study proposes an approach that facilitates the calculation of the rotation capacity (R) based on a soft computing technique developed using an experimental database accumulated from prior studies. The ensemble decision tree (EDT) model was studied to construct a soft computing model that accurately predicts R based on training and testing datasets. The model’s performance metrics used were well-known criteria, namely the coefficient of determination (CC), root mean square error (RMSE), as well as mean absolute error (MAE). With CC = 0.925, RMSE of 3.20, and MAE of 2.60, the study’s findings indicate that the EDT model accurately estimates the rotation capacity of wide-flange steel beams. Furthermore, sensitivity analysis and 2D partial dependence analyses were proposed to determine the effect of the factors that affect R. This work could be a significant step toward determining the R of wide-flange steel beams and aiding in improving structural member design.

Copyright: © Thuy-Anh Nguyen and Hai-Bang Ly et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10698199
  • Published on:
    11/12/2022
  • Last updated on:
    15/02/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine