0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Enhancing the Thermal and Energy Performance of Clay Bricks with Recycled Cultivated Pleurotus florida Waste

Author(s): ORCID

ORCID

ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 3, v. 14
Page(s): 736
DOI: 10.3390/buildings14030736
Abstract:

The development of energy-efficient and sustainable building materials is imperative to reduce energy consumption in the construction sector. This study addresses both the applied problem of increased solar heat gain and decreased indoor thermal comfort, as well as the scientific problem of reducing the thermal conductivity of clay bricks. It investigates the incorporation of recycled spent mushroom materials, consisting of Pleurotus florida mycelia and rice husk waste, as a novel additive in the production of fired clay bricks (FCBs) to enhance thermal insulation properties. The developed bricks were utilized in an optimized wall design for a residential building in New Cairo, Egypt. The wall design is created using energy modeling software, including Honeybee, Ladybug, Climate Studio, and Galapagos. The results demonstrate that an optimal waste content of 15% and a firing temperature of 900 °C yield the best thermal performance. Compared to traditional FCB walls, the new design incorporating the florida waste additive significantly improves thermal comfort, as indicated by a lower predicted mean vote and predicted percentage of dissatisfaction. Furthermore, the developed walls contribute to a reduction in CO2 emissions of 6% and a decrease in total energy consumption of 38.8%. The incorporation of recycled florida waste offers a sustainable approach to enhancing standard brick fabrication processes. This work highlights the promise of agricultural waste valuation for the development of eco-friendly and energy-efficient building materials. Future research should explore the mechanical strength, acoustics, cost–benefit analysis, and field implementation of the developed walls, thereby addressing both the scientific and applied aspects of the problem.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10773586
  • Published on:
    29/04/2024
  • Last updated on:
    05/06/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine