0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Enhancing the Performance of a Photovoltaic-fed Multilevel Inverter Using a Pi Hysteresis Controller

Author(s):


Medium: journal article
Language(s): Spanish
Published in: DYNA, , n. 3, v. 97
Page(s): 321-328
DOI: 10.6036/10262
Abstract:

In recent years, power quality has become almost as important in the renewable energy sector. Much of today's research is focused on resolving power quality issues. These issues are related to a voltage (sags, swells, distortions, and imbalances), system response speed, harmonics, ripples, and Electromagnetic Interference (EMI). Many researchers have recently been working on various controllers to address power quality issues. These articles primarily address power quality issues that arise as a result of system response time, harmonics, and torque ripples. This study will be used to improve the performance of a photovoltaic (PV) fed multilevel inverter. In the field of renewable energy systems, controllers have played a critical role. Proportional (P), Proportional-Integral (PI), and Proportional Integral Derivative (PID), Fractional Order PID (FOPID), and Integral Order PID (IOPID) controllers are used in renewable energy systems to improve power quality. In this study, the response of the PI controller will be measured, analyzed, and compared to the response of the PI hysteresis controller. Existing methods make use of a photovoltaic-fed multilevel inverter, a boost converter, a multilevel inverter, and a proportional-integral (PI) controller. As a load, a three-phase induction motor is used. A PI hysteresis controller is used in place of a traditional PI controller in the proposed system. For the PI Controller, the Experimental Hardware prototype model is designed and validated. Simulation designs for existing and proposed systems are carried out using MATLAB Simulink, and the results are noted and verified. Keywords: PI controller, Multilevel Inverter (MLI), boost converter, hysteresis controller, ripple reduction, Photovoltaic module.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.6036/10262.
  • About this
    data sheet
  • Reference-ID
    10665559
  • Published on:
    09/05/2022
  • Last updated on:
    09/05/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine