0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Enhancing the Accuracy of Low-Cost Inclinometers with Artificial Intelligence

Author(s):
ORCID
ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 2, v. 14
Page(s): 519
DOI: 10.3390/buildings14020519
Abstract:

The development of low-cost structural and environmental sensors has sparked a transformation across numerous fields, offering cost-effective solutions for monitoring infrastructures and buildings. However, the affordability of these solutions often comes at the expense of accuracy. To enhance precision, the LARA (Low-cost Adaptable Reliable Anglemeter) system averaged the measurements of a set of five different accelerometers working as inclinometers. However, it is worth noting that LARA’s sensitivity still falls considerably short of that achieved by other high-accuracy commercial solutions. There are no works presented in the literature to enhance the accuracy, precision, and resolution of low-cost inclinometers using artificial intelligence (AI) tools for measuring structural deformation. To fill these gaps, artificial intelligence (AI) techniques are used to elevate the precision of the LARA system working as an inclinometer. The proposed AI-driven tool uses Multilayer Perceptron (MLP) to glean insight from high-accuracy devices’ responses. The efficacy and practicality of the proposed tools are substantiated through the structural and environmental monitoring of a real steel frame located in Cuenca, Spain.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10773319
  • Published on:
    29/04/2024
  • Last updated on:
    05/06/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine