0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Enhancing Strength and Corrosion Resistance of Steel-Reinforced Concrete: Performance Evaluation of ICRETE Mineral Additive in Sustainable Concrete Mixes with PFA and GGBS

Author(s):


ORCID
Medium: journal article
Language(s): English
Published in: Infrastructures, , n. 12, v. 9
Page(s): 228
DOI: 10.3390/infrastructures9120228
Abstract:

This study investigates the impact of an innovative mineral additive, ICRETE, on steel-reinforced concrete’s compressive strength and corrosion resistance. Nineteen concrete mixes were designed incorporating recycled industrial by-products, including Ground Granulated Blast Furnace Slag (GGBS) and Pulverized Fuel Ash (PFA), with varying dosages of ICRETE. Compressive strength was tested using cube specimens, cured, and assessed at 3, 7, and 28 days following IS 516-2018 standards. Corrosion behavior was evaluated in accordance with ASTM G109, employing macrocell potential monitoring and electrochemical methods, including Tafel extrapolation and linear polarization resistance. The results revealed that ICRETE-enhanced mixes achieved compressive strengths of 56.93 MPa at a water–cement ratio of 0.35 and 50.61 MPa at 0.38, surpassing the control mix’s 50.9 MPa at 0.33. Microstructural analysis via X-ray diffraction (XRD) and scanning electron microscopy (SEM) showed that ICRETE improved hydration, reduced porosity, and refined the microstructure, contributing to more excellent durability. Meanwhile, results demonstrated that the ICRETE additive reduced corrosion rates, displaying lower corrosion current densities and higher polarization resistance values where the corrosion rate dropped from 0.01 mmpy in control samples to 0.0081 mmpy with ICRETE. Environmental assessments indicated that ICRETE could significantly lower CO₂ emissions, reducing up to 46.50 kg CO₂ per cubic meter of concrete. These findings highlight ICRETE’s potential to enhance strength and durability, supporting its use in sustainable, eco-friendly concrete applications.

Copyright: © 2024 the Authors. Licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10812523
  • Published on:
    07/01/2025
  • Last updated on:
    25/01/2025
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine