0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Enhancing Human Reliability Prediction in Smart Tower Crane Interfaces: A Refined Approach Using Simplified Plant Analysis Risk–Human Reliability Assessment and the Decision Making Trial and Evaluation Laboratory–Analytic Network Process

Author(s):
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 4, v. 14
Page(s): 1083
DOI: 10.3390/buildings14041083
Abstract:

With the advent of Industry 4.0, the prevalence of tower cranes equipped with hook visualization is increasing. However, the introduction of new interface management tasks has led to novel patterns of human errors for operators. The Simplified Plant Analysis Risk–Human Reliability Assessment (SPAR-H) method has emerged as a relevant approach for the prediction of human reliability in smart construction tower crane operations. However, the current SPAR-H method is only partially applicable and does not fully meet the requirements of this study. Initially, a text mining approach (TF-IDF-TruncatedSVD-ComplementNB) was employed to identify operator error-specific terms in tower crane operations. These terms were then correlated with the eight Performance Shaping Factors (PSFs) of the SPAR-H method, and corresponding failure modes and potential causes were determined from the literature. This ensured a more objective selection of influencing factors and PSFs during the stratification process, which was validated through questionnaire surveys. Furthermore, standards for SPAR-H PSF levels were established based on the characteristics of tower crane operators. Given the inherent complexity of relationships among SPAR-H PSFs, the DEMATEL-ANP method was applied. This involved analyzing logical interactions and causal relationships between first_level and second-level indicators of PSFs, obtaining weights, and integrating these with the SPAR-H method to determine human reliability. Finally, an analysis and validation were conducted using a case study of an accident involving a smart construction tower crane, confirming the subsequent reliability of operator actions. The result of the accident case study yielded a reliability measure of 4.2 × 10−5. These findings indicate that the evaluation process of this method aligns with scenarios encountered in smart construction tower crane operations.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10773665
  • Published on:
    29/04/2024
  • Last updated on:
    05/06/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine