0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Enhancing Flexural Resistance in Pre-Damaged RC Beams with Near-Surface Mounted GFRP Bar and Bolt Anchoring System

Author(s): ORCID

ORCID


Medium: journal article
Language(s): English
Published in: Buildings, , n. 3, v. 14
Page(s): 723
DOI: 10.3390/buildings14030723
Abstract:

The objective of this research was to explore the mechanical properties and failure mechanisms of reinforced concrete beams (RC beams) strengthened with near-surface mounted (NSM) glass fiber-reinforced polymer (GFRP) bars. This study focused on evaluating the effect of various factors on the load-deflection response and failure patterns of RC beams, including pre-existing damage, end anchorage, bar length, bar number, and the condition of concrete cover. The tested RC beams were divided into three groups. The first group included undamaged and damaged control beams. The second group involved the strengthening of beams after inducing damage, with variations in bar length, number, and cross-sectional area. This group also included beams strengthened by GFRP bars with and without anchors. In the third group, the effects of different cover materials, cover bonding techniques, and anchor bolts on the strengthening bars were examined. The results of the experiment indicated a notable decrease in both cracking and maximum load capacity for beams that were pre-damaged. The inclusion of anchor bolts appeared to have a noticeable effect, enhancing the load-carrying capacity and reducing mid-span deflection. Opting for two bars proved to be more effective than using three bars, leading to a higher maximum load and improved ductility. Moreover, prioritizing the bonding of the concrete cover at the end of the bars was found to be more important than bonding in the area of maximum moment.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10773873
  • Published on:
    29/04/2024
  • Last updated on:
    05/06/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine