0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Enhanced velocity and weight-bearing capability of piezoelectric viscous-slip actuators utilising a pentagonal flexible hinge configuration

Author(s): ORCID
ORCID
ORCID
ORCID
ORCID

ORCID
Medium: journal article
Language(s): English
Published in: Smart Materials and Structures, , n. 11, v. 33
Page(s): 115011
DOI: 10.1088/1361-665x/ad8054
Abstract:

This research presents a novel piezoelectric stick–slip actuator design that capable of achieving higher speeds and handling heavier loads. This addresses the requirement for improved performance in the precision engineering industry. The symmetrical configuration of the pentagonal displacement amplification flexible hinge structure produces the transverse motion. The pentagon’s deformable range is sufficiently broad to amplify the piezoelectric stack’s output displacement and convert it into the desired transverse output displacement. To enhance the load capacity of the piezoelectric stick–slip actuator, one can raise the coupling displacement of the driving foot output. The flexible hinge construction undergoes finite element analysis, and the simulation results meet the design assumptions. The structure has been enhanced to mitigate the potential occurrence of jamming. A prototype was constructed and subjected to rigorous testing to examine its performance. The testing results indicate that the highest attainable velocity is 15.8 mm s−1, with an impressive precision of 35.9 nm. Despite being subjected to a load of 308 g, the output displacement remains steady at 0.376 mm s−1. A comparative study of experimental and finite element simulation findings demonstrates the feasibility of the structural design.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1088/1361-665x/ad8054.
  • About this
    data sheet
  • Reference-ID
    10801355
  • Published on:
    10/11/2024
  • Last updated on:
    10/11/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine