Enhanced Blast Response Simulation of LG Panels Using an Elasto-Damage Model with the Finite Element Method
Author(s): |
Ahmed Elbelbisi
Alaa Elsisi Mohammed H. Saffarini Hani Salim Zhen Chen |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 22 November 2023, n. 12, v. 13 |
Page(s): | 3025 |
DOI: | 10.3390/buildings13123025 |
Abstract: |
Laminated glass (LG) windows significantly enhance building safety due to their ability to retain shattered glass within the interlayer, but their susceptibility to failure under blast loading remains a concern. Compared with simplified models, detailed constitutive modeling is essential to evaluate these complex scenarios, as experimental investigation faces limitations in spatial and temporal resolutions. This study presents a robust model-based simulation approach for predicting the brittle failure response of glass in blast-resistant LG windows. An elasto-damage relation for glass (EDG) was integrated with the finite element model (FEM) to predict the blast response. Validation against shock tube testing results was performed to ensure the reliability of the FEM. Material parameters for the polymeric interlayer were obtained through dynamic experiments, enabling a reasonable representation of its constitutive behavior using the Johnson–Cook (JC) model. Additionally, a numerical parametric study was conducted to investigate how different glass types influence blast resistance performance. Tempered glass stood out for its blast resistance compared with annealed and heat-strengthened glass, displaying superior strength against blast loads. The Rankine-based elasto-damage description provides a more precise representation of the failure response than commonly used approaches. These findings contribute to advancing model-based simulation approaches for designing better blast-resistant LG windows, ensuring safer buildings. |
Copyright: | © 2023 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
11.56 MB
- About this
data sheet - Reference-ID
10754183 - Published on:
14/01/2024 - Last updated on:
07/02/2024