^ Energy Evolution and AE Failure Precursory Characteristics of Rocks with Different Rockburst Proneness | Structurae
0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Energy Evolution and AE Failure Precursory Characteristics of Rocks with Different Rockburst Proneness

Author(s):



Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2020
Page(s): 1-12
DOI: 10.1155/2020/8877901
Abstract:

Mastering the precursory information of rock failure is the basis of scientifically predicting rockburst, and AE technology is an effective means to solve this problem. The conventional uniaxial loading and cyclic loading/unloading tests of metagabbro and granite were carried out with GAW-2000 uniaxial electrohydraulic rigid testing machine to evaluate rockburst proneness. The energy evolution and AE characteristics of rocks with different rockburst proneness during loading are revealed. The results show that the rockburst proneness of granite is obviously stronger than that of metagabbro based on the comprehensive evaluation method of multiple rockburst proneness index. The reasons for different rockburst proneness are analyzed from the perspective of mineral composition and microstructure. Rockburst proneness is positively correlated with energy storage capacity. The elastic energy ratio of granite is obviously larger than that of metagabbro before peak stress. The intensity of AE signals generated in the failure process of strong rockburst rock (granite) is significantly higher than that of moderate rockburst rock (metagabbro). However, the peak frequency bands and amplitude all increase obviously before failure. Theb-value and memory characteristics of rock with different rockburst proneness have obvious similar change rules.

Copyright: © 2020 Feng Pei et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10425685
  • Published on:
    22/06/2020
  • Last updated on:
    02/06/2021