0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Energy Dissipation and Performance Assessment of the Connected Structure with a One-Side Damping Layer

Author(s):

ORCID

Medium: journal article
Language(s): English
Published in: Buildings, , n. 9, v. 12
Page(s): 1438
DOI: 10.3390/buildings12091438
Abstract:

Due to aesthetic demands and the necessity for multi-functionality, a unique structure with one or multiple links connecting adjacent buildings has attracted the attention of researchers. In order to improve vibration control, this study investigates the seismic mitigation performance of a connected structure with a one-side damping layer. The simplified shear model is employed to derive the structure’s motion equation. Based on the Kanai-Tajimi filtered spectrum model, the seismic response variances are calculated using the Lyapunov equation. To investigate the seismic energy distribution and mitigation performance, three models of the connected structure with a damping layer are analyzed using the index of the mean kinetic energy. The results shows that the stiffness and damping coefficient affects the vibration energy, while the excessive stiffness of the damping layer is shown to be detrimental to the damping effects. In sum, the novel connected structure shows excellent damping ability and effectively reduces the vibration energy. Damping layers placed at a lower position with a stiffer structure are shown to enhance the damping effect and lead to more energy dissipation through the damping layer. Thus, this study concludes that the introduction of a One-Side damping layer into the connected structure is an excellent alternative strategy for adjusting the energy distribution of the connected structure and meeting the design requirements.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10692747
  • Published on:
    23/09/2022
  • Last updated on:
    10/11/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine