0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Author(s): ORCID
ORCID
ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 4, v. 14
Page(s): 871
DOI: 10.3390/buildings14040871
Abstract:

This study addresses the critical need for sustainable architectural designs within the context of climate change and the significant role the built environment plays in greenhouse gas emissions. The focus of this paper is on understanding the influence of unbalanced cantilevers on the embodied carbon of structural systems in buildings, a subject that has, until now, remained underexplored despite its importance in architectural innovation and environmental sustainability. Employing a case study approach, the Melbourne School of Design (MSD) building serves as a primary example to assess the embodied carbon implications of cantilevered versus supported structures. The methodological framework encompasses a comparative embodied carbon assessment utilising an input–output-based hybrid life cycle inventory analysis approach. The findings reveal that unbalanced cantilevers in buildings, exemplified by the MSD building, can lead to a 10% increase in embodied carbon compared to alternative designs incorporating supporting columns. Such findings underscore the environmental premium for cantilevers, prompting a re-evaluation of design practices towards minimising embodied carbon. Through this investigation, the research contributes to the broader discourse on sustainable construction practices, offering valuable insights for both design practitioners and educators in the pursuit of improving the environmental performance of the built environment.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10773537
  • Published on:
    29/04/2024
  • Last updated on:
    05/06/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine