0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Efficient Investigation of Rock Crack Propagation and Fracture Behaviors during Impact Fragmentation in Rockfalls Using Parallel DDA

Author(s):


ORCID
ORCID


Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2021
Page(s): 1-17
DOI: 10.1155/2021/5901561
Abstract:

The study of the rock crack propagation and fracture behaviors during impact fragmentation is important and necessary for disaster evaluation of rockfalls. Discontinuous Deformation Analysis (DDA) incorporating virtual joints can offer a powerful tool to solve such a problem. In the analysis process, the computational efficiency is critical because the mesh must be very dense to make crack propagation more realistic. Thus, parallel DDA using OpenMP is applied. The flattened and precrack Brazilian disc tests are first reproduced, respectively, to verify the accuracy and efficiency of the parallel DDA with virtual joints. Then, the impact fragmentation process is simulated and validated with corresponding laboratory experiments in terms of crack propagation results. Furthermore, the effects of joint-slope angle, joint connectivity rate, and impact velocity on rock fracture behaviors are investigated. It is concluded that the peak number of cracks occurs when the joint-slope angle ranges between 30° and 45°; the higher impact velocity and joint connectivity rate tend to cause more cracks and larger damages to the specimen.

Copyright: © 2021 Lu Zheng et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10628269
  • Published on:
    05/09/2021
  • Last updated on:
    17/02/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine