0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Efficient Finite Element Approach to Four-Variable Power-Law Functionally Graded Plates

Author(s):

ORCID




Medium: journal article
Language(s): English
Published in: Buildings, , n. 10, v. 13
Page(s): 2577
DOI: 10.3390/buildings13102577
Abstract:

Many findings and conclusions about the analysis of functionally graded material plates/shells exist in past documents in the literature. Accurate micromechanical modeling of such elements is vital for predicting their responses in different operating environments by virtue of their functional properties along the direction of interest. Applying a single-parameter-dependent law leads to a plate/shell configuration in which the top surface is dominated by the ceramic part, while the bottom surface is occupied by a metal segment. But in actual practice, the situation arises where a designer/analyst should develop a model that incorporates all the possible combinations of the constituents at the top and bottom to meet current demands. In this study, the volume fraction value of a material was governed by a generalized four-parameter law for defining the material profile and incorporating different combinations of profiles. Aluminum/zirconia plates were considered for the study of their mechanics under different support conditions. Different conclusions were derived from this research, and it was perceived that the plate that had symmetric properties with respect to the neutral plane showed better performance than any other profile combinations. Out of the diverse results that are presented, symmetric profiles were recorded as having lower deflection values than those of the other profiles adopted in the study.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10744323
  • Published on:
    28/10/2023
  • Last updated on:
    07/02/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine