0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Efficiency Analysis of the Photovoltaic Shading and Vertical Farming System by Employing the Artificial Neural Network (ANN) Method

Author(s):
ORCID



Medium: journal article
Language(s): English
Published in: Buildings, , n. 1, v. 14
Page(s): 94
DOI: 10.3390/buildings14010094
Abstract:

Productive facades, consisting of photovoltaic shading and vertical farming systems, have been proposed as a means to improve the thermal and visual status of residential buildings while also maintaining energy performance and providing vegetables. However, how to quickly and accurately predict electricity and vegetable output during the numerous influencing architectural and environmental factors is one of the key issues in the early stages of design, and few studies have investigated the impact of such structures on both indoor environmental qualities and production performance. In this paper, we present a novel prediction method that uses experimental data to train and test an artificial neural network (ANN). The results indicated that using the Bipolar Sigmoid activation function to process the experimental data input to the artificial neuron network gives more accurate predicted results both in the yield of photovoltaic shading and vertical farming systems. In addition, this prediction method was applied to a typical high-rise residential building in Singapore to assess the self-sufficiency potential of high-rise residential buildings integrated with productive facades. The results indicated that the upper part of the building can meet 20.0–23.1% of the annual household electricity demand of a family of four in a four-room residential unit in Singapore and almost the entire year’s vegetable demand, while the middle part can meet 18.4–21.2% and 89.1%, respectively. The results demonstrated the importance of a productive facade in reducing energy demand, enhancing food security, and improving indoor visual and thermal comfort.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10753832
  • Published on:
    14/01/2024
  • Last updated on:
    07/02/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine