0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Effects of Working from Home on Greenhouse Gas Emissions and the Associated Energy Costs in Six Australian Cities

Author(s): ORCID

ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 4, v. 12
Page(s): 463
DOI: 10.3390/buildings12040463
Abstract:

Working from home (WFH) has been imposed due to the COVID-19 pandemic. The adoption of WFH impacts energy use in the residential, commercial, and transportation sectors. Consequently, this affects the greenhouse gas emission (GHGE) and the associated energy costs to workers and employers. This study estimates the effects of WFH on the GHGE and energy-related costs in the residential, commercial, and transportation sectors. A simple linear model was used to estimate the changes in the GHGEs and cost by a typical employee when WFH practice is adopted for 1.5 and 4 days per week. The adoption of WFH reduces the operational GHGE accounted for commercial buildings and transport. However, it increases the operational GHGE accounted for residential buildings, which is a maximum of about 6% and 12%, respectively, for WFH 1.5 and 4 days. The reduction of GHGE from transport is significantly higher than that of residential buildings. The GHGE reductions from the transport sector are about 30% and 80%, respectively, for WFH 1.5 days and 4 days per week. WFH for 1.5 and 4 days per week reduces the national annual GHGE by about 1.21 Mt CO2-e and 5.76 Mt CO2-e, respectively. Further, the annual transportation cost of an employee is reduced by 30% and 80% in each city when the employee WFH for 1.5 and 4 days per week. The outcomes of this study offer a direction to reduce energy consumption and related costs and potential future research avenues on this topic. Further, the findings also help policymakers develop a hybrid work model for the post-COVID-19 pandemic.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10664251
  • Published on:
    09/05/2022
  • Last updated on:
    01/06/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine