The Effects of Various Silicate Coatings on the Durability of Concrete: Mechanisms and Implications
Author(s): |
Jinfu Li
Jiale Song Shuheng Zhang Wei Liu Zhaokuan Cui Weiguang Li |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 1 February 2024, n. 2, v. 14 |
Page(s): | 381 |
DOI: | 10.3390/buildings14020381 |
Abstract: |
Silicate solutions can improve the durability of concrete conveniently and effectively. To horizontally compare the enhancement effects of different composite silicate solutions, three types of silicate surface treatment agents were prepared by using sodium silicate, potassium silicate, and lithium silicate as the main agents, along with urea, sodium polyacrylate, catalysts, and fluoro-carbon surfactants as the adjuvants. Furthermore, their effects on the durability of concrete were compared. The results showed that silicate surface treatment could reduce the content of Ca(OH)2, increase the content of hydrated calcium silicate (C-S-H), and improve the compactness and hydrophobicity of the hardened cement surface. Although the three surface treatments enhanced the durability of concrete, the effects differed based on the complexities and mixtures. The sodium silicate compounded with potassium silicate performed the best of all three, wherein the content of the C-S-H gel increased by 389.8%, the permeability decreased by 60.6%, the water contact angle improved to 83.5° and the chloride ion resistance and freeze–thaw resistance of concrete increased by 36.7% and 37.34%, respectively, compared with the control sample. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
7.3 MB
- About this
data sheet - Reference-ID
10760414 - Published on:
15/03/2024 - Last updated on:
25/04/2024