Effects of the Design Parameters of Ridge Vents on Induced Buoyancy-Driven Ventilation
Author(s): |
Ching-Mei Chen
Yi-Pin Lin Sung-Chin Chung Chi-ming Lai |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 18 January 2022, n. 2, v. 12 |
Page(s): | 112 |
DOI: | 10.3390/buildings12020112 |
Abstract: |
With ridge vents that are commonly used in building ventilation applications as the research object, this study analyzed how design parameters affect the efficiency of thermal buoyancy-driven ventilation induced by ridge vents through computational fluid dynamics (CFD). The design parameters of ridge vents include the width S, height H, and eave overhang E. In consideration of engineering practices, the parameter ranges were set as follows: S = 1.2, 1.8, 2.4, and 3 m; H = 0.3, 0.6, 0.9, and 1.2 m; and E = 0, 0.3, and 0.6 m. The results show that when a ridge vent is under buoyancy-driven ventilation, the height H serves as the dominant design parameter. Correlation equations of the induced ventilation rates with the relevant ridge vent design parameters are provided. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
9.79 MB
- About this
data sheet - Reference-ID
10657765 - Published on:
17/02/2022 - Last updated on:
01/06/2022