0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Effects of termal treatment on the physical properties of Buchenavia sp. (branquilho) wood

Author(s): ORCID
ORCID
ORCID
ORCID
ORCID
ORCID
Medium: journal article
Language(s): Portuguese
Published in: Ambiente Construído, , n. 1, v. 22
Page(s): 95-103
DOI: 10.1590/s1678-86212022000100580
Abstract:

This work aimed to evaluate the effect of heat treatment on the physical properties of wood from Buchenavia sp. The heat treatments were carried out at temperatures of 180 °C and 200 °C for 2 h. Apparent density (AD), basic density (BD), porosity (Ф), mass loss, longitudinal (LS), radial (RS), tangential (TS) and volumetric (VS) shrinkages and anisotropic factor (AF) were determined. The lowest values of basic density (0.67 g cm-3), apparent density (0.77 gcm-3), and porosity (43.3%) were observed for the wood treated at a temperature of 200 °C. Mass losses increased with increasing temperature and the highest values were observed under the condition of 200 °C (9.3%). The LS and AF was not affected by heat treatments. The mean values for RS (3.1%), TS (5.1%), and VS (9.1%) were reduced after the performance of heat treatments at temperatures of 180°C and 200°C, which did not differ from each other. The thermal treatments were able to reduce the dimensional instability of Buchenavia sp. Thermal treatments enhance the use of less prestigious Amazonian woods in the civil construction market.

Copyright: © 2022 Laysa Teles Vollbrecht, Adriano Reis Prazeres Mascarenhas, Rafael Rodolfo de Melo, Maúcha Fernanda de Mota Lima, Ricardo Pereira Soteil, Alexandre Santos Pimenta
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10640221
  • Published on:
    29/11/2021
  • Last updated on:
    02/12/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine