0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Effects of Interior Partition Walls on Natural Period of High Rise Buildings

Author(s):



Medium: journal article
Language(s): English
Published in: International Journal of Structural Stability and Dynamics, , n. 6, v. 17
Page(s): 1771006
DOI: 10.1142/s0219455417710067
Abstract:

In regions of low to moderate seismicity, serviceability limits states such as inter-story drift under wind load govern the design of the lateral load resisting structural systems of high rise buildings. The key objective in this regard is to provide adequate lateral stiffness to control lateral deflections and inter-story drifts. Current design practice assumes that the structural system alone provides lateral resistance against wind, the dominant load considered for countries like Australia. The contribution of nonstructural components (NSCs) such as interior partition walls on lateral stiffness is generally disregarded in the analysis of the buildings, even though it is commonly acknowledged that the NSCs play a significant role on the lateral stiffness of buildings. This technical note presents the results of a parametric study on the effects of NSCs, in particular, the effects of masonry interior partition walls on the fundamental period of buildings. The parameters considered in this study include: the number and length of walls, their material properties, the number of parallel moment resisting frames and the height of buildings. The results of this study indicate that interior walls can have significant effects on the lateral stiffness of buildings.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1142/s0219455417710067.
  • About this
    data sheet
  • Reference-ID
    10352375
  • Published on:
    14/08/2019
  • Last updated on:
    14/08/2019
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine