0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Effects of Floor System on Progressive Collapse Behavior of RC Frame Sub-Assemblages

Author(s): ORCID

ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 6, v. 12
Page(s): 737
DOI: 10.3390/buildings12060737
Abstract:

The ability to predict the resistance of reinforced concrete (RC) structures to progressive collapse as a result of an interior column removal has become a need in structural design. In general, three resistance mechanisms characterize the structure resistance to progressive collapse, flexural action, compressive arch action, and tension catenary action. The objective of this study is to investigate the effects of floor system configurations on the progressive collapse-resistance of RC frame sub-assemblages and the amount of energy dissipated in each resistance mechanism. This investigation employs a fiber element-based modeling technique to present findings into the effects of beam size and reinforcement details on the progressive collapse-resistance and energy dissipation of RC beam-column sub-assemblages with four equal spans. Three different span lengths of 5, 6, and 7 m were considered. A total of 38 floor system designs for gravity loads were performed in accordance with the ACI 318-14 design code. The modeling technique employed in this study was validated and utilized by the authors in previously published works. The study shows that beam size and the presence of slab are critical as they significantly affect the energy dissipation and progressive collapse-resistance and failure pattern of the sub-assemblage frames. Moreover, the presence of a slab was found to increase the energy dissipation by around 28%.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10679521
  • Published on:
    17/06/2022
  • Last updated on:
    10/11/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine