0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Effects of Different Types of Fibers on Fresh and Hardened Properties of Cement and Geopolymer-Based 3D Printed Mixtures: A Review

Author(s):



ORCID

Medium: journal article
Language(s): English
Published in: Buildings, , n. 4, v. 13
Page(s): 945
DOI: 10.3390/buildings13040945
Abstract:

Three-dimensional printed concrete (3DPC) is emerging as a new building material. Due to automation, this method dramatically decreases construction time and material wastage while increasing construction quality. Despite the mentioned benefits, this technology faces various issues. Among these issues, the inability to use steel bars for reinforcement and early age cracking because of the low water-to-binder ratio and high amount of binders can be mentioned. In this regard, due to the superior properties of fiber-reinforced concrete (FRC), such as high first crack strength, tensile strength, improvement ductility, and resistance to shrinkage cracking, one of the effective ways to reinforce the mixture of the 3DPC is to use fibers instead of steel bars. Regarding the mentioned issues, the effects of different fibers, such as steel, carbon fibers and so on, on fresh and mechanical properties and dimensional stabilities of hardened concrete have been reviewed. It is predicted that using fibers, especially hybrid fibers, not only covers the deficiencies of initial cracking of 3DPC, but also can be used instead of steel bars; therefore, this material can play a pivotal role in the construction industry’s future.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10728410
  • Published on:
    30/05/2023
  • Last updated on:
    01/06/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine