0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Effects of Coatings Containing Organic Ashes on the Corrosion Performance of Reinforcements

Author(s):
Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2019
Page(s): 1-11
DOI: 10.1155/2019/8353678
Abstract:

The aim of this study is to investigate the corrosion performance of reinforcement steels coated with a coating containing wheat straw, sunflower stalk, and corn stalk ashes and moreover to discuss the effect of the coating on the concrete durability. By replacing calcite with different amounts of these organic ashes in the dye production, innovative corrosion inhibitive coating types were introduced. These coating types have been applied both on the reinforcement steels and concrete surface. In order to understand the effects of the coating types produced with these organic ashes, the steel bars coated with them containing 6% of the organic ashes as fine aggregate were embedded into concrete samples. The samples were cured both in tap water and 3.5% NaCl solution for 180 days, and the mass losses of the steel bars were determined. Also, the inhibition efficiency of the coating was determined by using the galvanic cell method and accelerated corrosion tests. Furthermore, mass loss, compressive strength, abrasion resistance, freeze-thaw property, and capillary water permeability of the reinforced concrete samples with the produced coating were investigated. Test results showed that the minimum mass loss ratio in reinforcement was observed as 0.185% in samples coated with all three organic ash-added mixes. Also, for the same samples compressive strength loss was the lowest as 14%. As a result, the durability of concrete and the corrosion resistance of steel bars improve with the addition of wheat straw, sunflower stalk, and corn stalk ashes into the coating and they could be used as environment-friendly corrosion inhibitors.

Copyright: © I. Sanrı Karapınar et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10376183
  • Published on:
    06/10/2019
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine