Effectiveness of Vibration-Based Techniques for Damage Localization and Lifetime Prediction in Structural Health Monitoring of Bridges: A Comprehensive Review
Author(s): |
Raihan Rahmat Rabi
Marco Vailati Giorgio Monti |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 27 March 2024, n. 4, v. 14 |
Page(s): | 1183 |
DOI: | 10.3390/buildings14041183 |
Abstract: |
Bridges are essential to infrastructure and transportation networks, but face challenges from heavier traffic, higher speeds, and modifications like busway integration, leading to potential overloading and costly maintenance. Structural Health Monitoring (SHM) plays a crucial role in assessing bridge conditions and predicting failures to maintain structural integrity. Vibration-based condition monitoring employs non-destructive, in situ sensing and analysis of system dynamics across time, frequency, or modal domains. This method detects changes indicative of damage or deterioration, offering a proactive approach to maintenance in civil engineering. Such monitoring systems hold promise for optimizing the management and upkeep of modern infrastructure, potentially reducing operational costs. This paper aims to assist newcomers, practitioners, and researchers in navigating various methodologies for damage identification using sensor data from real structures. It offers a comprehensive review of prevalent anomaly detection approaches, spanning from traditional techniques to cutting-edge methods. Additionally, it addresses challenges inherent in Vibration-Based Damage (VBD) SHM applications, including establishing damage thresholds, corrosion detection, and sensor drift. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
1.5 MB
- About this
data sheet - Reference-ID
10773671 - Published on:
29/04/2024 - Last updated on:
05/06/2024