0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Effect on the Thermal Properties of Building Mortars with Microencapsulated Phase Change Materials for Radiant Floors

Author(s): ORCID
ORCID

Medium: journal article
Language(s): English
Published in: Buildings, , n. 10, v. 13
Page(s): 2476
DOI: 10.3390/buildings13102476
Abstract:

The use of slag silicate cement mortar as a thermal mass layer for radiant floor heating systems holds significant potential for active thermal energy storage systems in buildings. The main objective of this article is to experimentally test the thermal performance of slag silicate cement mortar thermal storage blocks after the addition of phase change materials. The present study focuses on investigating the thermal performance of thermal storage blocks made of slag silicate cement mortar that incorporates a microencapsulated phase change material (mPCM). The mPCM consists of particles of paraffin-coated resin, which are uniformly distributed in the mortar. The analysis revealed that the introduction of mPCM particles into the mortar decreases the bulk density by approximately 9.4% for every 5% increase in mPCM particles ranging from 0% to 20%. The results obtained utilizing the Hot Disk characterization method demonstrate that the mPCM particles significantly affect the thermal properties of the mortar. Particularly, the thermal conductivity and thermal diffusion coefficient of the SSC30 mortar with a 17.31 wt.% mass of mPCM particles decreased by 59% and 69%, respectively. The results of this study provide a basis for the application of RFHS end-use thermal storage layers.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10744404
  • Published on:
    28/10/2023
  • Last updated on:
    07/02/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine