0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Effect of Textile Sludge on Strength, Shrinkage, and Microstructure of Polypropylene Fiber Concrete

Author(s):






Medium: journal article
Language(s): English
Published in: Buildings, , n. 2, v. 13
Page(s): 379
DOI: 10.3390/buildings13020379
Abstract:

Textile sludge has complex components and certain toxicity, which is in urgent need of resource treatment. The effect of textile sludge replacing cement and aggregates on the properties of polypropylene fiber concrete has been investigated by testing the compressive strength, drying shrinkage, heavy metal leaching concentration, micro morphology, and nanomechanical properties. The results show that the utilization of 10% textile sludge replacing cement increases the later strengths of concrete and decreases the drying shrinkage due to its denser microstructure. With the further content increase of textile sludge replacing cement, the strengths of concrete are reduced and the drying shrinkage is increased. The utilization of textile sludge replacing aggregates increases the compressive strengths of concrete and the drying shrinkage at every age, and among them, the concrete with 15% textile sludge replacing aggregates shows the highest compressive strengths, and the drying shrinkage of concrete increases with the content increase of textile sludge replacing aggregates. The concrete with textile sludge is a good solidification with heavy metal ions. The utilization of 10% textile sludge replacing cement improves the microstructure of concrete and helps to produce more high-density calcium silicate hydrate and reduces the thickness of the interfacial transition zone.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10712545
  • Published on:
    21/03/2023
  • Last updated on:
    10/05/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine