^ The Effect of Specimen Shape on the Mechanical Properties of Sisal Fiber-Reinforced Concrete | Structurae
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures


The Effect of Specimen Shape on the Mechanical Properties of Sisal Fiber-Reinforced Concrete


Medium: journal article
Language(s): English
Published in: The Open Civil Engineering Journal, , n. 1, v. 12
Page(s): 368-382
DOI: 10.2174/1874149501812010368


Fiber reinforced concrete is becoming popular in improving the quasi-brittle failure of concrete. Natural fibers such as sisal holds great promise in this regard. It has amazing tensile strength and is renewable. This paper presents the result of an investigation carried out on the effect of sisal fiber on the compressive strength, Split tensile strength, failure mode and Poisson ratio of Sisal Fiber-Reinforced Concrete (SFRC).


A mix proportion of 1:1.92:3.68 and w/c ratio of 0.47 for a target compressive strength of 35 MPa was used. Sisal fiber was added at percentages of 0.5%, 1.0%, 1.5%, and 2.0% by weight of cement. The effect of specimen shape on the compressive strength of sisal fiber-reinforced concrete (SFRC) was reported. The compressive strength of cube (150mm X 150mm) and cylinder (150mm diameter and 300mm height) specimen was determined at 7 and 28 days, while Split tensile strength and Poisson ratio were obtained using cylindrical specimen (150mm diameter and 300mm height).

Results and Conclusion:

The result shows that the addition of sisal fiber slightly reduces the compressive strength of concrete, increases its split tensile strength up to 47.167% of the control specimen, arrests crack propagation and reduces its Poisson ratio. The correlation between the compressive strength of cylindrical and cube specimen was established with a ratio ranging between 0.82 - 0.73. The difference in the compressive strength was found to increase with rise in the percentages of sisal fiber. Based on the ratio and mechanical properties, 1.0% sisal fiber content was recommended as the optimum for reinforcing concrete.

Copyright: © 2018 Abass Abayomi Okeola et al.

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
  • Published on:
  • Last updated on: