0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Effect of Selected Nanospheres on the Mechanical Strength of Lime-Stabilized High-Plasticity Clay Soils

Author(s):






Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2019
Page(s): 1-11
DOI: 10.1155/2019/4257530
Abstract:

The proper design of protective structures may start from improving the characteristics of soils. In order to obtain reasonable safety criteria, several research studies have recently been dedicated to enhancing complex civil engineering structural systems with the use of nanotechnology. Thus, the following paper investigates the effect of nanospheres, including nanosilica (nano-SiO₂) and nano zinc oxide (nano-ZnO), on lime-stabilized high-plasticity clay soil. For this purpose, unconfined compressive strength (UCS) and California bearing ratio (CBR) tests were performed on samples. The results showed that the use of the selected nanospheres greatly increased the UCS of the samples compared to untreated soil. The UCS value of samples containing 6% lime and 1.5% nano-ZnO after 28 days of treatment increased by 5-fold compared to the UCS of untreated samples. In addition, the samples containing 6% lime and 2% nano-SiO₂, with similar curing conditions, experienced a 5.3-fold increase in their UCS value compared to the untreated samples. These compounds were considered as the optimal amounts and showed the highest mechanical strength in both UCS and CBR tests. The same trend was achieved in the CBR test, in which the CBR value for the optimal mixtures containing nano-ZnO and nano-SiO₂ was 14.8 and 16.6 times higher than that of high-plasticity clay soil, respectively. Finally, the results obtained from scanning electron microscopy (SEM) analysis revealed that the nanospheres caused a dense and compact matrix to form in the soil, which led to the enhancement of the mechanical strength of the treated samples.

Copyright: © 2019 Ali Ghorbani et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10312885
  • Published on:
    09/05/2019
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine