0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Effect of Precompression and Material Uncertainty on the In-Plane Behavior of URM Pier–Spandrel Systems

Author(s): ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 1, v. 13
Page(s): 203
DOI: 10.3390/buildings13010203
Abstract:

Theoretical and experimental studies on loadbearing masonry walls have shown the significant influence of the axial load level (i.e., precompression) and wall aspect ratio on in-plane lateral resistance. Nonetheless, the impact of the precompression and spatial variability of the material properties needs to be further investigated at the scale of walls with openings. This study presents a stochastic analysis of unreinforced (URM) pier–spandrel systems subjected to both axial loads on piers and lateral loads, considering the spatial variation in material properties. A discontinuum-based computational model was utilized to assess the force–displacement behavior of a benchmark pier–spandrel structure under different vertical precompression levels on piers. A total of 750 simulations were carried out to propagate material uncertainties in lateral load analysis. The proposed modeling strategy, based on the discrete element method, explicitly represents joint openings, sliding, and crushing phenomena at the contact points defined between the adjacent discrete rigid blocks. According to the validated computational modeling strategy, meaningful inferences were made regarding the effect of the precompression level on the maximum displacement and ultimate lateral load-carrying capacity of the benchmark URM pier–spandrel system. The results showed that vertical pressure on piers had considerable influence on the displacement ductility of the system while yielding less variation in the displacement capacity. Furthermore, the appealing feature of the spatial probabilistic analysis is noted in the variation in the lateral load-carrying capacity of the structural system.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10712079
  • Published on:
    21/03/2023
  • Last updated on:
    10/05/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine