0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Effect of Interior Space and Window Geometry on Daylighting Performance for Terrace Classrooms of Universities in Severe Cold Regions: A Case Study of Shenyang, China

Author(s):
ORCID




Medium: journal article
Language(s): English
Published in: Buildings, , n. 3, v. 13
Page(s): 603
DOI: 10.3390/buildings13030603
Abstract:

Good daylighting performance positively affects students’ physical and mental health, learning efficiency, and the building’s energy-saving capability. Due to the terrace classroom having ample space, large capacity, the ability to avoid obstructing sight, and the ability to meet various use needs, it is the most important place in university buildings. However, research on the daylighting performance of university terrace classrooms is limited, leading to a lack of quantitative guidance in early design stages. This study aims to explore the effects of interior space and window geometry of terrace classrooms in universities in severe cold regions on daylighting performance. This research took Shenyang as an example; spatial daylight autonomy (sDA300,50%) and useful daylight illuminance (UDI100–2000) were selected as daylighting performance evaluation indices. Based on the Grasshopper parametric platform, the simulation was carried out using Ladybug and Honeybee plugins. Correlation and regression analyses revealed the relationship between interior space and window geometry parameters and the evaluation indices. The results showed the following: window-to-floor ratio (WFR), classroom height (Htc), window height (Hw), window-to-wall ratio (WWR), classroom width (Wtc), and window width (Ww) have positive effects on improving the daylight sufficiency of the terrace classrooms facing each orientation, and the degree of the effect decreases in order. To ensure the overall daylighting performance, the Wtc can be maximized. The width of walls between windows for south-facing and west-facing classrooms should be 0.9 m. The WWR and WFR for south-facing classrooms should be 0.3–0.5 and 0.11–0.14, respectively. The WWR and WFR for north-facing classrooms should be 0.6–0.7 and 0.14–0.20, respectively. Prediction models are established for the sDA300,50% and UDI100–2000 of the terrace classrooms facing each orientation.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10711972
  • Published on:
    21/03/2023
  • Last updated on:
    10/05/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine