0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Effect of Friction Coupling on Discharge Velocity Profiles and Force Chain Distribution of Maize Particles in Silos

Author(s):


Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2020
Page(s): 1-14
DOI: 10.1155/2020/6655054
Abstract:

The evolution mechanism of discharge velocity profiles and force chain distribution of maize particles in silos was studied based on the interaction between internal and external rolling friction of particles. Through EDEM, the silo and maize grain models were established for unloading simulation, whose flow pattern was compared with the silo unloading test to verify the rationality of the simulation. By slice observation, we compared and analyzed the time evolution rules of particle mesoscopic parameters under different friction conditions. The results show that the larger the interparticle friction coefficient is, the longer the total discharge time is and the smaller the coefficient of rolling friction between particles, the earlier the particle flow from mass flow to funnel flow. For silos with the funnel, the reduction of interparticle friction will change the limit between the mass flow and the funnel flow, thus increasing the area of the funnel flow. When the coefficient of rolling friction increases, the vertical velocity and angular velocity of the particle near the silo middle increase. However, the effects of internal and external friction coupling on the vertical velocity of the side particle, the horizontal velocity of the whole particle, and the spatial distribution and probability distribution of the force chain are more significant.

Copyright: © Yong Feng et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10506798
  • Published on:
    27/11/2020
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine