0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Effect of Freezing-Thawing Cycle on the Mechanical Properties and Micromechanism of Red Mud-Calcium-Based Composite Cemented Soil

Author(s):




Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2020
Page(s): 1-14
DOI: 10.1155/2020/8825576
Abstract:

The environmental issues caused by solid waste have become increasingly serious. Adding additive is considered as an effective measure to improve the performance of the cemented soil. Therefore, the feasibility study of solid waste such as red mud and desulfurization gypsum used in composite cemented soil is in urgent demand. In this study, the mechanical properties and durability to freezing-thawing cycle of red mud-calcium-based composite cemented soil (RMCC) were analyzed through compressive strength test, resistivity test, and freezing-thawing cycle test. The action mechanism of RMCC was revealed through a series of X-ray diffraction (XRD) and scanning electron microscope (SEM) with energy dispersive spectrometer (EDS) test. The results show that the optimal red mud content in RMCC is 12%. As the freezing-thawing cycle progresses, the difference in resistivity and pressure sensitivity of RMCC gradually weakens. When the freezing-thawing cycle reaches 7, the pressure sensitivity characteristic of RMCC is lost. The change in resistivity and pressure sensitivity can be used to characterize the damage caused by the freezing-thawing cycle. Combined with XRD and SEM analysis, the presence of minerals such as K2Ca5(SO4)6·H2O and (Ca, Na)2(Si, Al)5O10·3H2O play a key role in fixation of alkali metal elements, and the coordination of CSH gel cementation effect and AFt filling effect has a significant impact on mechanical properties. The study provides an effective way to the utilization of red mud and desulfurization gypsum in subgrade strengthening.

Copyright: © Hao Wen et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10525998
  • Published on:
    11/12/2020
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine