0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Effect of Elevated Temperatures on Compressive Strength, Ultrasonic Pulse Velocity, and Transfer Properties of Metakaolin-Based Geopolymer Mortars

Author(s): ORCID

ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 7, v. 14
Page(s): 2126
DOI: 10.3390/buildings14072126
Abstract:

This study aims to investigate the impact of moderate and elevated temperatures on compressive strength, mass loss, ultrasonic pulse velocity (UPV), and gas permeability of mortars made using metakaolin (MK) or Ordinary Portland cement (OPC). The geopolymer mortar comprises MK, activated by a solution of sodium hydroxide (SH) and sodium silicate (SS) with a weight ratio of SS/SH equal to 2.5. For most of the tests, the MK and OPC mortar specimens were cured for 7 and 28 days before exposure to elevated temperatures, ranging from 100 °C to 900 °C in increments of 100 °C. In the permeability tests, conducted at temperatures ranging from 100 °C to 300 °C in 50 °C increments, the results revealed significant findings. When exposed to 200 °C, MK geopolymer mortar demonstrated an increase in compressive strength by 83% and 37% for specimens initially cured for 7 and 28 days, respectively. A strong polynomial correlation between UPV and compressive strength in MK mortar was observed. Prior to heat exposure, the permeability of MK mortar was found to be four times lower than that of OPC mortar, and this difference persisted even after exposure to 250 °C. However, at 300 °C, the intrinsic permeability of MK mortar was measured at 0.96 mD, while OPC mortar exhibited 0.44 mD.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10795122
  • Published on:
    01/09/2024
  • Last updated on:
    01/09/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine