0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Effect of Elevated Temperature on the Properties of Self-Compacting Mortar Containing Nanomaterials and Zircon Sand

Author(s): ORCID
ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2022
Page(s): 1-18
DOI: 10.1155/2022/7918750
Abstract:

The present research work tries to assess the performance of a self-compacting mortar containing zircon sand as a substitute for river aggregate in combination with nanoalumina and nanosilica as cement replacements. The fresh state results, as observed through the mini slump cone and mini V funnel, showed positive effects of zircon sand on workability attainment. The EFNARC limits of workability were even satisfied at high substitution levels of the nanoparticle due to the contribution of zircon sand. The mechanical properties, durability, and microstructure of the mortar were evaluated by conducting experiments at room temperature and then at 200°C, 400°C, 600°C, and 800°C. Results show that there was a significant improvement in the thermal stability of the RPC mixes due to the synergistic effect of nanomaterials and zircon sand addition. The addition of nanomaterials and zircon sand accelerated the microstructural buildup and durability at elevated temperatures. The findings thus suggest a novel and effective approach to using zircon sand as a potential alternative to quartz sand in RPC in combination with nanomaterials to produce temperature-resistant concrete structures.

Copyright: © Sahaya Ruben et al. et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10698151
  • Published on:
    11/12/2022
  • Last updated on:
    15/02/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine