0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Effect of Desert Sand on the Mechanical Properties of Desert Sand Concrete (DSC) after Elevated Temperature

Author(s): ORCID
ORCID
ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2021
Page(s): 1-17
DOI: 10.1155/2021/3617552
Abstract:

Building fires and shortage of medium sand resources have become two major issues in building domain. Desert sand was used to produce desert sand concrete (DSC), which was suitable for engineering utility. The mechanical properties tests of DSC with different desert sand replacement ratio (DSRR) were carried out after elevated temperature. The effects of elevated temperature and DSRR on DSC mechanical properties were analyzed. DSC microstructure was investigated by SEM and XRD. Research studies’ results showed that the relative compressive strength increased gradually with increasing temperature. The maximum value appeared at 200°C–300°C, and it began to decrease at 500°C. Compared with room temperature, the compressive strength at 700°C was about 70% of that at room temperature. Relative splitting tensile strength increased first and then decreased, and the value reached the maximum at 100°C. DSC relative flexural strength decreased with the temperature. Relative compressive strength, splitting tensile strength, and flexural strength of DSC enhanced first and then decreased with DSRR, and the maximum values were obtained with 40% DSRR. Based on the regressive analysis, the relative compressive strength was a quadratic polynomial with relative porosity. Relative splitting tensile strength and relative flexural strength were linear with relative porosity. Research results can provide the technical support for DSC engineering application and postfire assessment.

Copyright: © 2021 Yijiang Liu et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10625408
  • Published on:
    26/08/2021
  • Last updated on:
    17/02/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine