0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

The Effect of Demolition Concrete Waste on the Physical, Mechanical, and Durability Characteristics of Concrete

Author(s):



ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 4, v. 14
Page(s): 1148
DOI: 10.3390/buildings14041148
Abstract:

With the development of urbanization, more and more construction and demolition waste (CDW) is generated. To enhance the mechanical properties and durability of concrete through the incorporation of recycled aggregate, the water/cement ratio was controlled to optimize the properties of concrete. In this work, one reference concrete with a water/cement ratio of 0.5 was prepared. The demolition concrete waste from East China was used, and 50% and 100% of the natural aggregates of the reference concrete were substituted. Furthermore, the water/cement ratio of concrete with 50% and 100% CDW was reduced to 0.3, and the superplasticizer was used to justify the workability of fresh concrete. Finally, the workability of fresh concrete was determined. After curing for 28 days, the density, water absorption, and resistance to chloride penetration of concrete were realized. The compressive and flexural strength were examined at 14 and 28 days, and the electrical resistivity test was conducted at 7, 14, and 28 days. The results indicate that with increasing CDW content, the mechanical properties and durability of concrete decreased. However, when the water/cement ratio decreased to 0.3, the concrete properties were optimized, such as the compressive strength and resistance to chloride penetration of concrete with 50% CDW increased by 74.2% and 28%, respectively.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10773581
  • Published on:
    29/04/2024
  • Last updated on:
    05/06/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine