0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Effect of Aggregate-to-Binders Ratio on Water Resistance of Red-Mud-Modified Magnesium Phosphate Repair Mortar

Author(s):



ORCID

Medium: journal article
Language(s): English
Published in: Buildings, , n. 7, v. 14
Page(s): 2174
DOI: 10.3390/buildings14072174
Abstract:

The aggregate-to-binders ratio (A/Bs) is an important parameter for the design and preparation of repair mortars. In this paper, the influences of A/Bs on the physical and mechanical properties of red-mud-modified magnesium phosphate repair mortar (RMPM) were systematically investigated. By exploring the capillary absorption characteristics of RMPM, the effect mechanism of A/Bs on its water resistance and mechanical properties was further clarified. The results indicated that the fluidity of fresh RMPM reduced with an increase in A/Bs, and its setting time was first shortened and then prolonged. The compressive strength, flexural strength, interfacial bonding strength, and water resistance of RMPM increased and then decreased with the increasing A/Bs and reached the maximum when the A/Bs was 1.0. The capillary absorption of RMPM was a linear correlation with the square root of the immersion time, and whose slope, that is, the capillary absorption coefficient, and capillary porosity decreased and then increased with the increase in A/Bs. Capillary porosity had a linear relationship with the strength retention rate, which indicated that A/Bs produced a significant effect on the water resistance of RMPM by modifying its capillary pore characteristics. When the A/Bs was 1.0, RMPM had the lowest capillary absorption coefficient and capillary porosity, and thus possesses appropriate mechanical properties and water resistance.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10794980
  • Published on:
    01/09/2024
  • Last updated on:
    01/09/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine