0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Eco-Friendly and Biocompatible Material to Reduce Noise Pollution and Improve Acoustic Comfort in Healthcare Environments

Author(s):
ORCID



ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 10, v. 14
Page(s): 3151
DOI: 10.3390/buildings14103151
Abstract:

Noise pollution negatively impacts people’s mental and physiological health. Unfortunately, not only is noise present in hospital environments, but its level frequently exceeds recommended thresholds. The efficacy of passive acoustic absorbers in reducing indoor noise in these scenarios has been well-documented. Conversely, given their inorganic composition and their origin in the petrochemical industry, most of these materials present a risk to human health. Over the last few years, there has been a notable increase in research on eco-friendly, low-toxicity, and biocompatible materials. This work outlines a methodology for fabricating recycled acoustic panels from plastic bottles and PET felt composites. This study encompasses three key objectives: (i) a comprehensive biocompatibility assessment of the panels, (ii) an evaluation of their thermal and acoustic properties, and (iii) their applicability in several case studies to evaluate potential acoustic enhancements. Specifically, antifungal resistance tests, Volatile Organic Compound (VOC) emission assessment, and cell viability experiments were conducted successfully. Additionally, experimental procedures were performed to determine the thermal conductivity and thermal resistance of the proposed material, along with its sound absorption coefficients in diffuse field conditions. Finally, the potential benefits of using this biomaterial in healthcare environments to reduce noise and improve acoustic comfort were demonstrated.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10804818
  • Published on:
    10/11/2024
  • Last updated on:
    10/11/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine