0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Eco-friendly 3D Printing Mortar with Low Cement Content: Investigation on Printability and Mechanical Properties

Author(s): ORCID






Medium: journal article
Language(s): English
Published in: Civil Engineering Journal, , n. 3, v. 10
Page(s): 808-823
DOI: 10.28991/cej-2024-010-03-010
Abstract:

The conventional approach to achieving optimal printability and buildability in 3D printing mortar relies heavily on cement, which is both costly and environmentally detrimental due to substantial carbon emissions from its production. This study aims to mitigate these issues by investigating the viability of slag as a partial substitute for cement, with the goal of developing an eco-friendly alternative. The newly formulated mortar, featuring a 30% reduction in cement content (from 830 to 581 kg/m3) and the inclusion of 0.10% micro-fibers, exhibits properties comparable to conventional 3D printing mortar. The research is structured into two parts: Part 1 focuses on determining the optimal fiber content, while Part 2 delves into the investigation of fiber-reinforced mortar with reduced cement content for 3D printing. Criteria were established to ensure mortar flow at 115%, initial printable time below 60 minutes, and 7-day compressive strength exceeding 28 MPa. Part 1 results indicate that a fiber content of 0.1% by volume meets the specified requirements. In Part 2, it was observed that increasing the slag replacement percentage extended the initial printable time and time gap. However, even at a 30% replacement rate, the initial printable time remained within the acceptable range, partially attributed to the presence of fibers in the mix. Additionally, higher slag content led to increased flow and reduced filament height in the mixes. Notably, all formulations surpassed the 7-day compressive strength threshold. These findings underscore the potential of slag as a sustainable alternative to cement in 3D printing fiber-reinforced mortar, offering promising prospects for environmentally friendly construction practices. Doi: 10.28991/CEJ-2024-010-03-010 Full Text: PDF

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.28991/cej-2024-010-03-010.
  • About this
    data sheet
  • Reference-ID
    10776256
  • Published on:
    29/04/2024
  • Last updated on:
    29/04/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine