Eco-Efficient Mortars for Sustainable Construction: A Comprehensive Approach
Author(s): |
Rui Reis
Aires Camões Manuel Ribeiro Raphaele Malheiro |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 25 August 2024, n. 9, v. 14 |
Page(s): | 2812 |
DOI: | 10.3390/buildings14092812 |
Abstract: |
Cement production is responsible for approximately 7% of global carbon dioxide emissions. Despite our efforts, we have not been able to find a competitive substitute that is both reliable and environmentally friendly. The easiest way to solve the issue is to rationalize resources and try to minimize their use by replacing them with other materials. The current market shortage and reduced initial strength have limited the availability of blends that contain a significant amount of fly ash. Given the current economic, political, and environmental circumstances, it is predicted that a solution may be ternary blends with cement, fly ash, and MTK. Despite being “ancient” materials, there have been no recent global performance assessments. In this context, an investigation was carried out with ternary blend mortars. A significant volume of cement has been replaced with fly ash and metakaolin. The results show that these blends’ performance is promising because they offer a wide range of possibilities for replacing cement, maintaining or even improving its properties. MTK and fly ash’s synergies significantly enhance mechanical performance and durability. Furthermore, the global sustainability analysis shows that ternary blends are 36% more efficient than binary blends of cement and fly ash or metakaolin. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
3.22 MB
- About this
data sheet - Reference-ID
10799874 - Published on:
23/09/2024 - Last updated on:
23/09/2024